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Dynamic Theory of Intermodulation
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Abstract —This paper studies the third-order intermodulation distortion
of signals in a reflection amplifier that are separated by an appreciable

fraction of the bandwidth. This large separation of input signals requires

taking account of the energy interchange between diode and circuit. A
theory of intermodulation distortion accounting for this interaction is
developed for large-order nonlinearities. Previous analyses of this problem
have been limited to small nonlinearities and small separation of the input
signals. Experimental verification of the theory developed here is demon-
strated for an IMPATT diode reflection amplifier as a function of power
level and tone separation.

I. INTRODUCTION

N ORDER TO BE able to design high-quality high-

power wide-bandwidth satellite communication sys-
tems, a theoretical understanding of the intermodulation
distortion produced by signals arbitrarily placed within the
band must be developed. This arbitrary separation of input
signals requires accounting for the energy interchange be-
tween device and circuit. This. paper presents a theory for
such interaction in the presence of large-order nonlineari-
ties.

Intermodulation distortion is usually measured with two
very closely spaced signals as a function of the input
power. In this situation the envelope frequency of the two
input signals is much less than the amplifier bandwidth.

- For this case the diode amplitude follows the input signal
amplitude and a theoretical description has been given by
H. Komizo et al. {1}. For tone separations comparable to
or greater than the amplifier bandwidth, the energy ex-
change between diode and circuit must be taken into
account. Javed er al. [2] have included device-circuit en-
ergy interchange in their analysis, but their series solution
is limited to very small nonlinearities and they have ex-
amined experimentally only very small tone separations.

The significant difference of the theory developed here is
that the nonlinear amplifier response to the amplitude of
the combined input signals is solved in the time domain.
Two coupled first-order differential equations in amplitude
and phase of the envelope are derived using the slowly
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varying amplitude approximation. These differential equa-
tions are solved numerically and thus large nonlinearities
present no special problem in calculating the distortion.
This theory is applicable to both three- and two-terminal
amplifier circuits but this paper deals only with a single-
tuned reflection amplifier for simplicity. In addition, for
the first time experimental data for large tone separations

- are presented and analyzed.

II. EXPERIMENT

Fig. 1 shows a block diagram of the experimental setup.
A narrow-band single-resonance high-gain amplifier was
the subject of the experimentation. There were two main
reasons for its choice. The first was that relatively large
voltages would be developed across the diode chip for
medium input powers, thus allowing a large diode nonlin-
earity to be explored without the need for a high-power
TWT amplifier. The second reason was that smaller
frequency differences would be required to develop a sig-
nificant phase shift between the input and -output signals.
A final factor in the circuit choice was its simplicity, which
allows for a much easier theoretical representation and
understanding. The first step of the analysis was to char-
acterize the diode circuit, and the diode itself. This was
done by generating a power-in versus power-out curve, as
is shown in Fig. 2. Curves of reflected power versus
frequency were recorded for various input power levels,
and two such cases are shown in-Figs. 3 and 4. The
normalized negative conductance g can now be found since
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where Q. and Q, are the external and amplifier quality
factors. This information is used to create a graph of the
negative conductance versus the square root of the normal-
ized input power (P, /Py ma)'/ > and is shown in Fig. 5.

The external Q, was found by determining the small
signal negative conductance g,, from (2) and determining
the loaded Q; which is also related to Q. by the following
expression:

1 _1__1_-_Af1/2
Qx+Qa_QL— fO (3)

0018-9480 /82 /0500-0729$00.75 ©1982 IEEE



730 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 5, MAY 1982

Amplifier
Under
Test

Fig. 1. Block diagram of microwave test setup for measuring reflection
amplifier intermodulation distortion.
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Fig. 2. Power-out versus power-in for the amphfier used in the distor-
tion measurements.
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Fig. 3. Power-out versus frequency of the amplifier for an input power

level of 0.5 mW,

where Af, ,, is the half-power bandwidth, and f; is the
center frequency. The amplifier circuit used for the inter-
modulation distortion measurements was thus determined
to have a Q, of 60.
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Fig. 4. Power-out versus frequency of the amplifier for an input power
level 3.0 mW.
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Fig. 5. Normalized diode negative conductance as a function of the
normalized voltage amplitude of the incident signal [( P;) max = 8.0 mW].
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Fig. 6 Measurements of third-order intermodulation distortion versus
tone separation at various input power signal levels.

Finally, measurements of the level of third-order IMD
versus A f, the separation of the two tones, were made on a
spectrum analyzer for various input power levels. These
results are shown in Fig. 6. The curves shown in Fig. 6 are
the average of the upper and lower intermodulation side-
bands.
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III. THEORY

Let us first consider a model for the IMPATT diode
amplifier which is shown schématically in Fig. 7. In the
figure, the ABCD matrix represents a lossless network
which defines the amplifier gain and bandwidth, planes (1)
and (2) are the reference planes of the diode circuit and
diode chip, respectively, Y, is the diode chip admittance,
Y, is the characteristic line admittance, Y; is in amplifier
input admittance, and Y; is the circuit load admittance
presented to the diode. P,, and P, are the input and
output powers and ¥, is the peak ac voltage across the
diode chip.

The reflection coefficient at plane (1) is given by the
relationship ,

0, =(Y%—1)/(Y,+Y,)

:[(Yik_YD)/(YL"'YD)]eXP(”‘]B) 4

where
exp(— jB) =(—Y,B+D)/(Y,B+ D). (%)

The assumption of a lossless network means that the

element B is pure imaginary and the element D is real, thus
“making the phase angle 8 real.

The amplifier distortion we wish to calculate arises from
the nonlinear diode response to the input signal. One must
first set down the relation between the incident input signal
and the diode voltage which is the sum of the incident and
reflected waves

V=V TV, =V, (1+p,)

(6)

where ¥, and V,_ are the incident and reflected waves at
plane (2) and p, is the reflection coefficient at that plane.
This reflection coefficient is given by

Yf — Y
p e
2 Y, +7Y,

(™)

and differs from p, defined in (4) by only the phase factor
of (5). From (6) one obtains the relation

Vo =41+ g+ )V,

(3)

where
g=Gp /Gy, b=(B,+ Bp)/Gy.

This relation can be interpreted in a normal way if the
voliages are single harmonic components with g and b
being the normalized conductance and susceptance at the
frequency of interest. For the measurement of intermodua-
tion distortion, however, the signal V,, has the form

V,, =2V,cos ptcos wyt (9)
where

p=1/2(w,—w,) "-’0:1/2("’1+‘°2)-
In addition, the diode nonlinearity produces harmonic
cornponents in ¥,,. To handle this situation we can regard
g and b as differential-integral operators in the time do-
main. Then by using the slowly-varying amplitude ap-

731

Circulator

(DIOG. )
Circuit
P {i) Reference plane of the diode circust

n
{2) Reference plane of the diode chip

Fig. 7. Schematic representation of the reflection amplifier showing
reference planes and admittances at those planes.

proximation one can derive a differential equation in time
which describes the diode-circuit behavior at low frequen-
cies but contains admittance components evaluated at ;.

For this singly-tuned resonant cavity used in the experi-
ment, (8) takes the form

AY,
V2+=%{1+gss+—b—zq

+

C+Cd , 11
G, d G,

ZJrLi”)falz}V,f (10)

where g is the normalized small signal diode conductance,
C and L are the equivalent cavity capacitance and induc-
tance, and C, and L, denote the diode transition capaci-
tance and electronic inductance, respectively. The operator
AY,, represents the deviation of the diode admittance from
the small signal values indicated in (10).

To reduce (10) to a differential equation on the slowly-
varying part of V,, = A(t)e’*" we use the relations

d dA
Jwol = 1
e V="t jwod (11)
and
1 1 dA
—Jjwot - - a4
e ofdtV,f ijA—i- e - (12)

Equations (11) and (12) are readily obtained by operating
on the Fourier transform of V,,. Substituting these back
into (10) one obtains

4V, cos pt = 2@% +(1+ g, )A+e 7' Ap,V,. (13)
where

C=(C+¢)/G, L£'=(L"'+L}")/G,

WR=1/CL  Ap,=AY,/G;.

The remaining task is to evaluate the final term in (13).
Using the Fourier transform of ¥, again and expanding
the admittance function about w, and the amplitude of the
ac voltage across the diode ¥, one obtains

~Joot A §. dA . 0g ab
oo akyD l;/lk
k§1 aVlk k! (14)



732 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 5, MAY 1982

where only the first order term in the Taylor expansion is
necessary with respect to w, but all the higher order terms
in the expansion with respect to ¥, are included because
we are interested in being able to handle large nonlineari-
ties. Inserting (14) back into (13) we obtain

4V, cos pt = 2@— aaf +aaf
o 0
+[1+g+jbld (15)
where
0 ak Vk
1+g, + 2 ay’l: =1t gt jb.

The slowly-varying coefficient A contains both the ampli-
tude and phase of the diode voltage amplitude A(¢) =V e/?.
Putting this relation into (15) and separating the real and
imaginary components gives

4V, cos preos(o+v) =2C, dt +\/(1+ )y + b2
-cos(®@—y)V, (16a)

—4Vocosptsm(¢+y) 26 eqd V(1+g)2+b2

sin(®@—v)V, (16b)

where we have used

_ 98 L 00
2€ J6w0+8w 2C e
and
b
tang—‘ng‘.

Equations (16a) and (16b) may be further simplified by
considering a case where =0, giving § =0 and letting
vy =0, to obtain

cos(27ry)cos<;b*—K~—+(l+g)u (17a)
—cos(2my)sing = d_¢ (17b)

where
27y =pt =20.p/w, U=V, /4, 0.=wl,.

Upon examining (17b) one notes that when u =0 then ¢
must also be zero to avoid a singularity in d¢/dy. When
both (17a) and (17b) are solved simultaneously one obtains
¢ =0 as a solution, leaving just one equation to be solved,
namely

2ar
%ZY[COS(%W)—(H—g)u]. (18)
Equation (18) has been used to calculate the intermodula-
tion distortion for the experimental measurements made on
an IMPATT diode amplifier.
The outline of the expected response of the diode voltage
to varying separation of the two tones can be seen from

solving (18) for the case where the diode conductance g is
independent of V. An analytic solution can be obtained
for this case in the form

1
[(1+g) + k2]

u(y)= Scos(2my—¢)  (19)

where

tany =K /(14 g).
One can see from this expression that # responds in phase
to the incident signal for very small K (i.e., small separa-
tion of the two tones), and lags by 90° when the tone
separation is much greater than the bandwidth of the
amplifier.

IV. REsSuULTS

In order to compare the results of the theory with those
of the experiment, it is first necessary to fit the diode
conductance found experimentally to a polynomial in u so
it can be included in (18). This relation g(«) is found from
the experimental data by first choosing (P, )y.x- The input
power scale is then normalized to this ( Py, ).« 8LVIDgG

cos pt = [Pin/(Pm)max]l/z‘ (22)

Using the value of g calculated from (2), the normalized
diode voltage u is calculated from the expression

=cos pt/(1+g). (23)
A least-squares routine was used to fit the curve of g to a
fifth-order polynomial in «. This was done for two differ-
ent cases, P, =0.5 mW and P,,=3 mW, and the results
are shown in Figs. 8 and 9, respectively.

Equation (18) can now be solved by a fourth-order
Runga-Kutta routine. Initial results were obtained on an
HP-97 calculator, but for the final results a PDP-11 was
used because of its increased speed. Fig. 10 shows several
solutions to (18) of the diode voltage versus time. The
increasing phase shift of the diode voltage can be seen as K
increases, corresponding to a larger tone separation. The
distortion present in Fig. 10 can be seen more clearly by
plotting u versus cos pt as shown in Fig. 11. The smallest
value of K =0.05 corresponds to a tone separation of 6
MHz which is less than 10 percent of the half-power
bandwidth, but as is evident in Fig. 11 there is still a
pronounced effect due to energy interchange between the
diode and the cavity.

The intermodulation distortion is given by the ratio of
the third-harmonic component of u — u(3) to the first-
harmonic component of the reflected wave u‘). The funda-
mental component of the diode voltage is given by

uV =ya? + b} (24)
where
a,= 2/1ucos(277y) dy
0
and

b, = 2/01usin(27ry) dy
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Fig. 8. Normalized diode negative conductance as a function of the
normalized chip voltage for an input power level of 0.5 mW.

P =30 mW

o] 5 1.0 15 20
u

Fig. 9. Normalized diode negative conductance as a function of the
normalized chip voltage for an input power level of 3.0 mW.
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Fig. 10. Calculated normalized diode voltage versus time for several
different separations of the two tone input signal.

Similarily, for the third harmonic

u® = a2+ b2 (25)

where
a;= Z/Iucos (67y) dy
0
and

by= 2f]usin (6my) dy.
0

To calculate the amplitude of the reflected fundamental

733

201

Pn=30 mwW
10
0.0 05 0.2 04:=K
v
0
10 cospt

-10
20l

Calculated normalized diode voltage versus the amplitude of
the input signal envelope for several tone separations.

Fig. 11.

0 r
-5} O Ppn=3.0mW (Exp)
® Pp=30mW (Caic.)
o Bp=05 mW (Exp.)}
-lor ¢ P =05mW (Calc)
o
=z
- -5
a
2
_20-
_25.
-30 \ N : .
0 50 100

Af (MH2)

Fig. 12. Comparison of measured and calculated intermodulation dis-
tortion as a function of tone frequency separation for average input
power levels of 0.5 and 3.0 mW.

component one subtracts the amplitude of the incident
signal

u®=uyM—0.5 (26)

where

u® = (cos pt) /2.
Since there is no incident signal at the third harmonic
u® =u®. Finally, the third-order intermodulation distor-
tion in decibels is given by

IMD = 20log,, |4/ u]. (27)

The distortion of the amplifier at two different power
levels, 0.5 and 3.0 mW, was compared to theory as a
function of the tone separation using the experimentally
determined value Q¢ = 60 and the results are shown in Fig.
12. The agreement is quite good for the simple case consid-
ered. The theory presented here should be applicable to
broadband circuits and to three-terminal amplifiers as well.
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